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UAVs as end-devices

Two types of traffic

« UAV-generated payload
« BVLoS UAV command & control

The dream

* Seamlessly reuse existing (or soon-
to-be-deployed) infrastructure

The reality

 Must prepare the ground to
accommodate aerial end-devices

Urban air mobility — air taxis, airport shuttles, first-aid eVTOL:
pilot onboard - remote pilot - autonomous



Air-to-ground interference

 UAVs experience LoS propagation
with several ground BSs

— Downlink: BS-to-UAV interference
— Uplink: UAV-to-GUE interference SINR degradation for a connected device as it flies higher

+10 —

+5.3dB

| Minimum decodable SINR |

10 -9.7dB

-20

Average downlink SINR [dB]

1.50 m 75m 150 m 300 m
Connected device height




Air-to-ground interference mitigation
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Connectivity on aerial corridors

» Sky-wide connectivity
- Connectivity on aerial corridors

— UAVs unlikely to fly unrestricted

Aerial
corridors

— Predetermined routes to be regulated

— Safety-driven, network-agnostic

UAVs following predetermined routes, where
ultra-reliable connectivity must be guaranteed



Network optimization
for aerial corridors



Network optimization for aerial corridors

Design cellular networks to serve: Connectivity for ground users and aerial corridors
— Legacy ground users é Aerial
— UAVs on predefined corridors // corridors

Parameters to optimize: Zaat J22\ /l?‘ﬁ iR

Antenna tilts, transmit power,

Performance metrics:
SINR

Not trivial! Candidate tools:

— Bayesian optimization



for aerial corridors
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tion of tilts and power for SINR at GUEs and UAVs
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Example: Bayesian opt
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Network optimization for aerial corridors

Parameter trading off

Reach a satisfactory trade-off by: ,
— Boosting the SINR for UAVs
compared to the baseline 09
— Nearly preserving the SINR at 0.8~
ground users compared to all- 0.7
downtilt, max-power baseline 0
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Network optimization for aerial corridors

Limitation: model-based approach,
3GPP channel model used (statistical)

Way forward: data-driven design,
scenario-specific propagation models
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Data-driven air-to-ground
channel modeling



Data-driven channel modeling

Available channel models:
 3GPP statistical models

— Not scenario-specific

* Ray tracing
— Need blueprint of environment
— Computationally expensive

Proposed approach:

* Generative model, producing:
pathloss, delay, angles for each path

* Training:
scenario-specific dataset from ray tracing
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Scenario-specific air-to-ground model needed



Data-driven channel modeling

Link State Path Generative
Predictor Network Network

Link
/.\ State s
Condition Vector u — \./ — Path Parameters x
\ /ZState Condition Vector u —

Latent Variable zNp,05 —

First stage

Input: Output:

u=(d,c) s link state q d st

d is the distance  (LoS vs NLoS) econd stage
c 1s the cell type Input: Output:

u=(d,c) x, containing for each path:
s link state  path loss, delay, AoD, AoA, ZoD, ZoA
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Data-driven channel modeling

Model matches empirical distribution

Rooftop BSs (data) Rooftop BSs (model)
* LoS probability: >
g 0.9
— Higher UAVs - higher LoS probability ~ o
— Rooftop BSs > LoS for farther UAVs E .
= X

» Path angular distribution (not shown): 500 1000 1300 500 1000 1500 06
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Data-driven channel modeling

Limitation: not spatially consistent
(distance-based, not location-based)

Way forward: lightweight digital twin
of the propagation environment
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Recap and way forward

What will it take for wireless communications to conquer the sky?

— New tools to optimize deployments for aerial corridors
- From model-based to data-driven

— Digital twinning of the propagation environment

- Lightweight and spatially consistent ﬁ%

— Opportunistic traffic steering across TN-NTN
- 3D mobility management, trajectory awareness

— G. Geraci, et al.,, “Integrating terrestrial and non-
terrestrial networks: 3D  opportunities and
challenges,” IEEE Communications Magazine, 2023.

— G. Geraci, et al.,, “What will the future of UAV
cellular communications be? A flight from 5G to 6G,”
IEEE Communications Surveys & Tutorials, 2022.
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