
How To Know When You Don’t Know:
AI for Engineering and 6G

Osvaldo Simeone

King’s College London

6G Wireless Foundations Forum 2023, 10/7/2023

Osvaldo Simeone Calibration and AI in Engineering 1 / 60



Motivation
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Calibration of AI
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African hunting dog mixing bowl electric guitar

African hunting dog

mixing bowl

electric guitar

AI models typically output a hard decision, along with a confidence
level (or, conversely, an uncertainty level).
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When failing, conventional deep learning-based AI systems tend to
make incorrect decisions confidently.1

1
G. Guo, et al, “On calibration of modern neural networks,” in Proc. International conference on machine learning (ICML),
2017.
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Calibration of AI
Conventional deep learning-based AI provides unreliable estimates of
uncertainty: poor calibration.
A well-calibrated AI is one that “knows when it knows and knows
when it does not know”.
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Calibration and Engineering

Calibration of AI is a key requirement for applications to
engineering:

▶ The value of an AI model is often not in its local accuracy, but rather
in the role it plays within a number of decision-making processes.

▶ The output of an AI model should be trusted by other models,
modules, and subsystems, requiring calibration.
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Calibration and Engineering

In digital twin platforms for the control and monitoring of 6G
networks, calibration supports:2,3

▶ safety by mitigating model exploitation
▶ functionalities such as directed exploration
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5

2
A. Thelen, et al, “A Comprehensive Review of Digital Twin – Part 2: Roles of Uncertainty Quantification and Optimization,
a Battery Digital Twin, and Perspectives,” arXiv:2208.12904, 2022.

3
C. Ruah, O. Simeone, B. Al-Hashimi, “Digital Twin-Based Multiple Access Optimization and Monitoring via Model-Driven
Bayesian Learning,” arXiv:2210.05582, 2022.
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Calibration of AI

The poor calibration of AI models stems from the fact that they are
designed with the goal of maximizing accuracy, not of managing
uncertainty.

“If a machine is expected to be infallible, it cannot also be
intelligent.” (Alan Turing)
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Calibration of AI: Challenges

Obtaining effective and efficient AI solutions that can quantify their
uncertainty requires advances in

▶ algorithm design: beyond optimization towards statistics and
information theory

▶ hardware-algorithm co-design: from the reproduction of
deterministic processes to the efficient control of stochastic processes
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This Talk

Part I: Algorithms
▶ Training-based calibration
▶ Post-hoc calibration

Part II: Hardware-algorithm co-design
▶ Neuromorphic computing

Conclusions

Osvaldo Simeone Calibration and AI in Engineering 10 / 60



Part I: Algorithms
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Predictive Uncertainty

Typical AI models output hard decisions and associated confidence
levels.
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output vector p(y |x , θ)

Hard decision = 1 (class with largest score)

Confidence level = 0.4 (self reported)

Calibration measures the extent to which the confidence level
matches the true (test) accuracy of a decision.

Osvaldo Simeone Calibration and AI in Engineering 12 / 60



Predictive Uncertainty

Typical AI models output hard decisions and associated confidence
levels.

θ

x

input
vector

class 0

class 1

class 2

class 3

0.08

0.40

0.22

0.30

output vector p(y |x , θ)

Hard decision = 1 (class with largest score)

Confidence level = 0.4 (self reported)

Calibration measures the extent to which the confidence level
matches the true (test) accuracy of a decision.

Osvaldo Simeone Calibration and AI in Engineering 12 / 60



Predictive Uncertainty

Typical AI models output hard decisions and associated confidence
levels.

θ

x

input
vector

class 0

class 1

class 2

class 3

0.08

0.40

0.22

0.30

output vector p(y |x , θ)

Hard decision = 1 (class with largest score)

Confidence level = 0.4 (self reported)

Calibration measures the extent to which the confidence level
matches the true (test) accuracy of a decision.

Osvaldo Simeone Calibration and AI in Engineering 12 / 60



Measuring Calibration

Calibration measures are an active subject of research.4,5

Standard approach: Reliability diagrams plot accuracy vs.
confidence, providing a visual depiction of calibration performance.6
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4
A. Perez-Lebel et al, “Beyond calibration: estimating the grouping loss of modern neural networks,” arxiv, 2022.

5
B. Holtgen, R. Williamson, “On the Richness of Calibration,” arXiv:2302.04118, 2023.

6
C. Guo, et al, “On calibration of modern neural networks,” ICML 2017.
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Calibration for Conventional Learning

Conventional (frequentist) learning yields poorly calibrated,
typically overconfident, decisions.7

7
S. Park, K. Cohen, O. Simeone, and S. Shamai, ”Bayesian Active Meta-Learning for Reliable and Efficient AI-Based
Demodulation”, IEEE Trans. Signal Processing, to appear.
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Calibration for Conventional Learning

[OpenAI, GPT-4 Technical Report, 2023]
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Taxonomy of Calibration Techniques

Training-based calibration:
▶ Train probabilistic models by accounting for calibration performance

Post-hoc calibration:
▶ Use a validation set to “recalibrate” a probabilistic model
▶ Can be combined with training-based calibration
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Part I: Algorithms
Training-Based Calibration
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Bayesian Learning
Bayesian learning is the gold standard for training-based calibration:

▶ Treat parameters as random variables...
▶ ... whose distribution is updated as a function of prior knowledge and

data to encode epistemic uncertainty.

𝑞∗ (𝜃)
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Ensemble Prediction

Decision obtained via ensembling, i.e., via

Eθ∼q∗(θ) [p(y |x , θ)] ,

accounting for the “opinions” of multiple models.

θ1 ∼ q∗(θ)

x

p(y |x , θ1)
θ2 ∼ q∗(θ)

x

p(y |x , θ2)
θS ∼ q∗(θ)

x

p(y |x , θS)

combine

...

p (y |x ,Dtr) = Eθ∼q∗(θ)[p(y |x , θ)] ≈ 1
S

∑S
s=1 p(y |x , θs)
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Ensemble Prediction
Epistemic uncertainty can be quantified via the disagreement or
agreement of models within the ensemble.

[T. Palmer ‘22]
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Bayesian Learning
Bayesian learning minimizes the free energy8

min
q(θ)

Eθ∼q(θ)[training loss(θ)] + β · distance (q(θ), p(θ))

Exact minimization of the free energy yields the posterior
distribution.
Practical solutions are based on approximate optimization
(variational inference), (Monte Carlo) sampling, and hybrid versions
thereof.

8
J. Knoblauch, et al, “Generalized variational inference: Three arguments for deriving new posteriors,” arXiv:1904.02063,
2019.
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Application: Uncertainty-Aware Digital Twins

Digital twin platform for the control and monitoring of a wireless
IoT network.9

9
C. Ruah, O. Simeone, B. Al-Hashimi, “A Bayesian Framework for Digital Twin-Based Control, Monitoring, and Data
Collection in Wireless Systems,” arXiv preprint arXiv:2212.01351, 2022.
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Uncertainty-Aware Digital Twins
The digital twin maintains a model of the physical twin using
domain knowledge and data.10

10
C. Ruah, O. Simeone, B. Al-Hashimi, “A Bayesian Framework for Digital Twin-Based Control, Monitoring, and Data
Collection in Wireless Systems,” arXiv preprint arXiv:2212.01351, 2022.
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Uncertainty-Aware Digital Twins
Bayesian model-based design (via multi-agent reinforcement
learning), prediction, anomaly detection, and directed exploration.11

11
C. Ruah, O. Simeone, B. Al-Hashimi, “A Bayesian Framework for Digital Twin-Based Control, Monitoring, and Data
Collection in Wireless Systems,” arXiv preprint arXiv:2212.01351, 2022.
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Uncertainty-Aware Digital Twins for IoT

Policy optimization

Directed exploration
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Uncertainty-Aware Digital Twins for IoT

Anomaly detectionPrediction
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The Importance of Model Specification

(Exact) Bayesian learning is only optimal in terms of calibration if the
model is well specified and if there are no outliers.12

12
M. Zecchin, S. Park, O. Simeone, M. Kountouris, D. Gesbert, “Robust Bayesian learning for reliable wireless AI: Framework
and applications,” arXiv preprint arXiv:2207.00300, 2022.
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Robust Bayesian Learning
Robust Bayesian learning:13

▶ use ensembling not only to quantify uncertainty, but also to increase
expressivity and mitigate model misspecification

▶ adopt an outlier-robust loss functions (from KL to α-divergence)
▶ derivation of a generalized free energy criterion using PAC-Bayes

theory

13
M. Zecchin, S. Park, O. Simeone, M. Kountouris, D. Gesbert, “Robust PACm : Training Ensemble Models Under Model
Misspecification and Outliers,” arXiv preprint arXiv:2203.01859, 2022.
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Part I: Algorithms
Post-Hoc Calibration
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Post-Hoc Calibration

Bayesian learning, and robust versions thereof,
▶ increase computational complexity as compared to conventional

learning during both training and inference (due to ensembling)
▶ do not provide formal finite-sample calibration guarantees

Post-hoc calibration schemes
▶ address complexity by operating on a pre-trained model
▶ can provide formal finite-sample calibration guarantees (conformal

prediction14,15)

.

14
V. Vovk, A. Gammerman, and G. Shafer, Algorithmic learning in a random world, Springer, 2023.

15
J. Cherian and L. Bronner, “How the Washington Post estimates outstanding votes for the 2020 presidential election”.
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Post-Hoc Calibration

Some algorithms recalibrate a probabilistic model by matching
accuracy estimated on a validation set.

input
vector
xval

class 0

class 1

class 2

class 3

0.01
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0.03

output vector p(y |xval, θ)

model parameter θ

▶ Temperature scaling, Platt scaling, isotonic regression
▶ No guarantee of calibration: may overfit the validation set16,17

16
A. Kumar, et al, “Verified Uncertainty Calibration,” NeurIPS 2019.

17
X. Ma and M. B. Blaschko, “Meta-Cal: Well-controlled Post-hoc Calibration by Ranking,” ICML 2021.
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Conformal Prediction

Conformal prediction produces set predictors.

A set predictor is less informative than a probabilistic predictor:
▶ Coarser, but easily interpretable, measure of uncertainty via set size

Conformal prediction aims at extracting well-calibrated set
predictors from probabilistic predictors.18
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subset of output values that includes the true output with a desired
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18
V. Vovk, A. Gammerman, and G. Shafer, Algorithmic learning in a random world, Springer, 2023.
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V. Vovk, A. Gammerman, and G. Shafer, Algorithmic learning in a random world, Springer, 2023.
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Calibration of Set Predictors
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A set predictor is well calibrated if

Pr[true label ∈ predicted set] ≥ 1− α

for some desired coverage probability 1− α.
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Set Predictors from Probabilistic Predictors

Well-calibrated probabilistic predictor =⇒ well-calibrated set predictor
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1− α
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Conformal Prediction
Conformal prediction applies an adaptive threshold to the
confidence levels based on additional information.

Offline CP

from validation

Online CP

from past observations

Osvaldo Simeone Calibration and AI in Engineering 37 / 60



Online Conformal Prediction

Online conformal prediction adjusts the threshold adaptively based
on past errors to minimize the regret.19,20

▶ It can be interpreted as a form of online gradient descent.
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III. WHY FREQ. OVERCONFIDENT?

Frequentist learning finds a single parameter vector. Assume that there do exist a gt single param vector.

Freq. would find a single param. vector that is the one that gives very overconfident, e.g., for any input

always yields p(y|x,�) = 1 for particular y, as the training data often has single (x, y) pair. This is

why usual freq. “finds” overconfident solution, while Bayesian cares prior to avoid this – this can be

interpreted as Bayesian also suffer from same issue of training data, but it has multiple params that are

overconfidient, so it becomes fine!

IV. PAC-BAYES

in general how the log is handled? maybe this is the key to the log loss and cal. ? What about if we

want to have bounds on joint event ?

V. STATISTICS

p-value, random forest, p-value for KS test ? – can we use it for seq. change detection?

permutation test !!

TODO: data processing ineq. TODO: f-divergence between indep P and Q TODO: what does it mean

by distributions are indep.?

�t+1 = �t + �(↵� errt) (3)

↵t+1 = ↵1 + t�(↵�
tX

t0=1

errt0) (4)

() ↵t+1 / t(↵� avg. miscoverage rate) (5)

VI. GOOD REFERENCES

A. PAC-Bayesian Theory

B. Modular learning

REFERENCES

19
I. Gibbs and E. Candes, “Adaptive Conformal Inference Under Distribution Shift,” arxiv.org/abs/2106, 2021.

20
S. Feldman, S. Bates, and Y. Romano, “Conformalized Online Learning: Online Calibration Without a Holdout Set,”
arxiv.org/abs/2205.09095, 2022.
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Calibration Guarantees

Offline conformal yields set predictors that are well-calibrated on
average over the generation of test and validation data (for
exchangeable (e.g., i.i.d.) data).

Online conformal prediction guarantees calibration on average over
time.21
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time-averaged success rate = 1 − α

21
A. Bhatnagar, H. Wang, C. Xiong, Y. Bai, “Improved Online Conformal Prediction via Strongly Adaptive Online Learning,”
arXiv:2302.07869, 2023.
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Prediction-Based Proactive Resource Allocation

Resource allocation based on the prediction of stochastic traffic.22

22
K. Cohen, S. Park, O. Simeone, P. Popovski, S. Shamai, “Guaranteed Dynamic Scheduling of Ultra-Reliable Low-Latency
Traffic via Conformal Prediction,” arXiv:2302.07675, 2023.
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Prediction-Based Proactive Resource Allocation

A scheduler that trusts a non-calibrated predictor may be unreliable
or inefficient.
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Prediction-Based Proactive Resource Allocation

Online conformal prediction allows the implementation of reliable
and efficient resource allocation schemes irrespective of the
calibration of the predictor.23

23
K. Cohen, S. Park, O. Simeone, P. Popovski, S. Shamai, “Guaranteed Dynamic Scheduling of Ultra-Reliable Low-Latency
Traffic via Conformal Prediction,” arXiv:2302.07675, 2023.
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Safe Black-Box Optimization

Black-box optimization with safety guarantees.24

24
Y. Zhang, S. Park, O. Simeone, “Bayesian Optimization with Formal Safety Guarantees via Online Conformal Prediction,ââ
arXiv:2306.17815, 2023.
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Meta-Learning for Conformal Prediction

Meta-learning transfers knowledge from multiple tasks to optimize
the inductive bias (e.g., model class) for new, related, tasks.25

vs.

vs.

vs.

task 1

task 2

task T

…

new task

vs.

transfer 
knowledge

goal: classify better with few samples

task 1

task 2

task T

…

new task

transfer 
knowledge

goal: play sports better with less practice

25
L. Chen, et al, “Learning with Limited Samples–Meta-Learning and Applications to Communication Systems,” FnT in
Signal Processing, 2023.
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Meta-Learning for Conformal Prediction

Meta-learning can enhance efficiency for set prediction, while
maintaining per-task formal coverage guarantees.26

task 1

task T

…

new task

transfer 
knowledge

goal: reliable set prediction with  
small average set prediction size 

with few samples

set prediction:  
{house finch, Walker hound}

set prediction:  
{Walker hound}

set prediction:  
{barrel, cliff}

set prediction:  
{barrel, cliff}

set prediction:  
{school bus}

set prediction:  
{black-footed ferret}

26
S. Park, K. Cohen, and O. Simeone, “Few-Shot Calibration of Set Predictors via Meta-Learned Cross-Validation-Based
Conformal Prediction,” in NeurIPS 2022 Workshop on Meta-Learning.
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Meta-Learning for Conformal Prediction

Application to modulation classification (RadioML 2018.01A data
set)

Other applications of CP to communications27

27
K. Cohen, S. Park, O. Simeone, S. Shamai, “Calibrating AI Models for Wireless Communications via Conformal Prediction,”
arXiv:2212.07775, 2022.
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Part II: Hardware-Algorithm
Co-Design
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Hardware-Algorithm Co-Design

Ensembling, which requires the random generation of models,
enables quantification of uncertainty.

Implementing ensembling on conventional digital hardware requires
the addition of computational resources in order to generate
randomness.

Randomness, however, is inherently present in the physical computing
substrate, e.g., thermal noise.
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Hardware-Algorithm Co-Design

Key idea: Hardware-generated randomness as a computational
resource:

▶ In-memory/ neuromorphic computing – noise from analog devices
▶ Quantum computing – measurement “noise”

Same principle applies beyond reliable AI for tasks such as generative
(e.g., diffusion) models28

A similar principle is to leverage communication noise in
decentralized AI platforms.29

28
P. Coles, “Thermodynamic AI and the fluctuation frontier”, arXiv:2302.09664.

29
D. Liu and O. Simeone, “Wireless federated Langevin Monte Carlo: Repurposing channel noise for Bayesian sampling and
privacy, IEEE Transactions on Wireless Communications, 2022.
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In-Memory Computing
For data-intensive workloads, the conventional separate
memory-processor architecture is limited by the “von Neumann
bottleck”...

... and in-memory computing can enhance energy, area, and time
efficiency.30

Also referred to as neuromorphic computing.

30
A. Mehonic, A. Sebastian, B. Rajendran, O. Simeone, E. Vasilaki, A. Kenyon, “Memristors – From In-Memory Computing,
Deep Learning Acceleration, and Spiking Neural Networks to the Future of Neuromorphic and Bio-Inspired Computing,”
Advanced Intelligent Systems, 2020.
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Neuromorphic Computing

In-memory computing systems adopt digital or mixed analog-digital
technology to implement nonvolatile memory devices.

[Mehonic and Kenyon ’21]
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Hardware Noise as a Computational Resource

Mixed analog-digital systems can be more energy and area efficient,
but they are subject to hardware noise arising from analog devices.

Noise is typically mitigated via, e.g., averaging.

For crossbar arrays of PCM devices, leverage hardware noise as a
resource for synaptic sampling implementing Bayesian ensembling.31

31
P. Katti, N. Skatchkovsky, O. Simeone, B. Rajendran, B. M. Al-Hashimi, “Bayesian Inference on Binary Spiking Networks
Leveraging Nanoscale Device Stochasticity,” in Proc. ISCAS 2023.
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Hardware Noise as a Computational Resource

Through hardware-algorithm co-design, accuracy and calibration
performance matches digital (SRAM) baseline implementation, with
significant projected savings in core area transistor count
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Spiking Neural Networks
Many neuromorphic chips implement spiking neural networks
(SNNs).32,33

2.1

32
H. Jang, O. Simeone, B. Gardner, and A. Gruning, “An Introduction to Spiking Neural Networks,” IEEE Signal Processing
Magazine, 2019.

33
N. Skatchkovsky, H. Jang, and O. Simeone, “Bayesian Continual Learning via Spiking Neural Networks,” Frontiers in
Neuroscience, Nov. 2022.
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Spiking Neural Networks for 6G

Synergy with neuromorphic sensors (e.g., Sony’s event-based vision
sensors) and with impulse radio34

Application to integrated sensing and communications35

34
J. Chen, N. Skatchkovsky, O. Simeone, “Neuromorphic wireless cognition...,” IEEE Transactions on Cognitive Communi-
cations, 2023.

35
J. Chen, N. Skatchkovsky, O. Simeone, “Neuromorphic Integrated Sensing and Communications,” IEEE Wireless Commu-
nications Letters, 2022.
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Spiking Neural Networks for 6G
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Conclusions
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Conclusions

AI systems in engineering should “know when they don’t know”.

Ensuring calibration calls for the development of novel algorithmic
frameworks and hardware-algorithm co-design paradigms.

Directions for future work:
▶ Interplay between calibration and privacy36, fairness37, and

explainability38

▶ Calibration and large language models, with applications39

▶ Uses cases for the adoption of neuromorphic and quantum computing
in engineering40

36
D. Liu and O. Simeone, “Privacy for Free: Wireless Federated Learning ...,”, IEEE JSAC, 2020.

37
G. Pleiss et al, “On fairness and calibration,” in Proc. NeurIPS 2017.

38
L. Schut, et al, “Generating interpretable counterfactual explanations...,” in AISTATS 2021.

39
V. Quach, “Conformal Language Modeling,” arXiv:2306.10193

40
J. Chen, “Neuromorphic Wireless Cognition: Event-Driven Semantic Communications for Remote Inference ,” IEEE Trans.
Cognitive Comm. and Networking, 2022
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Offline Conformal Prediction

Loss (scoring function) = decreasing function of the confidence

Offline conformal prediction includes in predictive set labels with
loss smaller than a fraction 1− α of examples in the validation set.

input
vector
x

class 0

class 1

class 2

class 3

0.01

0.90

0.06

0.03

output vector p(y |x , θ)

model parameter θ

loss
(e.g., − log p(y |x , θ))
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Offline Conformal Prediction

1. Train a probabilistic model with any algorithm

train

FM

256QAM

16QAM

Osvaldo Simeone Calibration and AI in Engineering 2 / 8



Offline Conformal Prediction

2. Using the trained model, evaluate a nonconformity score via a
scoring rule (e.g., log-loss) for each validation example

FM256QAM

FM16QAM

train

nonconformity 
score

FM

256QAM

16QAM

FM

FM

validation 
data
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Offline Conformal Prediction

3. Based on the target coverage level 1− α, determine
acceptance/rejection regions using empirical quantile of the
nonconformity scores.

FM256QAM

FM16QAM

train

validation 
data nonconformity score

FM

256QAM

16QAM

FM

FM

acceptance region

rejection region

target 
miscoverage α

α ≈ 0 α ≈ 1
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Offline Conformal Prediction

4. At test time, given a test input...

FM256QAM

FM16QAM

train

test input

nonconformity score
target 

miscoverage α

α ≈ 0 α ≈ 1

FM

256QAM

16QAM

FM

FM

validation 
data
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Offline Conformal Prediction

... compute the nonconformity score for each candidate label with
the same trained probabilistic model...

FM256QAM

FM16QAM

train

test input

16QAM

256QAM

FM

candidate class

target 
miscoverage α

α ≈ 0 α ≈ 1

FM

256QAM

16QAM

FM

FM

validation 
data nonconformity 

score

Osvaldo Simeone Calibration and AI in Engineering 6 / 8



Offline Conformal Prediction

... and include in the prediction set all the candidate labels that lie in
the acceptance region.

FM256QAM

FM16QAM

train

test input candidate class

target 
miscoverage α

accept

reject

α ≈ 0 α ≈ 1

FM

256QAM

16QAM

FM

FM

validation 
data nonconformity score

accept16QAM

256QAM

FM

set prediction:  
{16QAM, 256QAM}
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Calibration for OOD Data

Calibration-aided training41

41
J. Huang, S. Park, and O. Simeone, “Calibration-Aware Bayesian Learning,” in Proc. IEEE MLSP 2023
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