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What is a 
Programmable Metasurface?



Programmable Metasurfaces
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M. Di Renzo et al. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of
research, and the road ahead. IEEE JSAC, Nov. 2020.
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Towards Smart Radio Environments



Smart (Reconfigurable) Radio Environment
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Programmable Metasurfaces

6
M. Di Renzo et al. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of
research, and the road ahead. IEEE JSAC, Nov. 2020.

Main features (RIS):
 No power amplifiers
 No digital signal processing
 No radio frequency chains

Main features (HoloS):
 Power amplifiers
 Digital signal processing
 Radio frequency chains



Programmable Metasurfaces (RIS)
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M. Di Renzo et al. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of
research, and the road ahead. IEEE JSAC, Nov. 2020.
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RIS Example: 
Reflecting Metasurface



Reflecting Metasurface (RIS)
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Preflection ≈ Pincidence
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Generalized Snell’s Law



Generalized Snell’s Law
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Proof: 
Fermat’s Principle (1657)

“Light propagates from one point 
to another on trajectories such 

that the travel time is minimized”
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Generalized Snell’s Law:
How About the Reflected Power?



Amount of  Reflected Power
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* Unit amplitude, linear phase gradient 
o Non-unit amplitude, non-linear phase gradient
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Non-local sub-wavelength 
designs are needed

* Unit amplitude, linear phase gradient 
o Non-unit amplitude, non-linear phase gradient
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RIS/HoloS: 
Rethinking the Communication Model



From Plane Waves for Spherical Waves
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 Paradigm #1: The wavefronts of the electromagnetic waves are
(approximated as) locally planar on the antenna arrays
 RISs/HoloS are electrically large and the transmission distances are

shrinking

near field far field

conventional modelRIS/HoloS
model



Densification of  Radiating Elements
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 Paradigm #2: The radiating elements of antenna-arrays are
decoupled electromagnetically
 The inter-distances are smaller than the wavelength (< λ/2)

Conventional 
model

RIS/
HoloS
model

more elements on the 
same surface area

the same elements on a 
smaller surface area
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RIS: 
A Loaded Thin Wire Model



RIS: A Loaded Thin Wire Model
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 M. Di Renzo et al. “End-to-end mutual coupling aware communication model for
reconfigurable intelligent surfaces: An electromagnetic-compliant approach based on
mutual impedances”, IEEE WCL 2021.

 M. Di Renzo et al. “Mutual coupling and unit cell aware optimization for
reconfigurable intelligent surfaces”, IEEE WCL 2021.

 M. Di Renzo et al. “MIMO interference channels assisted by reconfigurable intelligent
surfaces: Mutual coupling aware sum-rate optimization based on a mutual impedance
channel model”, IEEE WCL 2021.

 M. Di Renzo at al. “Modeling the mutual coupling of reconfigurable metasurfaces”,
IEEE EuCAP 2023.

 M. Di Renzo et al. “Modeling and optimization of reconfigurable intelligent surfaces
in propagation environments with scattering objects”, IEEE WCL 2023 (submitted,
under review).

 M. Di Renzo et al. “Optimization of RIS-aided SISO systems based on a mutually
coupled loaded wire dipole model”, IEEE ASILOMAR 2023 (submitted - invited,
under review).

 M. Di Renzo et al. “Optimization of RIS-aided MIMO – A mutually coupled loaded
wire dipole model”, IEEE WCL 2023 (submitted, under review).

 …
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Modeling in Free Space



E2E Communication Model in Free Space
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Discrete Dipole Approximation
M. Johnson, P. Bowen, N. Kundtz, and A. Bily, “Discrete-dipole approximation model for control and optimization of
a holographic metamaterial antenna”, Appl. Opt., vol. 53, pp. 5791-5799, 2014.



E2E Communication Model in Free Space
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Modeling the Mutual Coupling
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Modeling the Mutual Coupling
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Modeling the Mutual Coupling
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tunZ I 0

the antenna is "invisible"

  

Minimum Scattering Antenna
Assumption:



Mutual Coupling: E2E Modeling

30



Mutual Coupling: E2E Modeling
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 Boundary conditions (SISO case)



Mutual Coupling: E2E Modeling
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 Boundary conditions (SISO case)

 Voltages at the ports of the thin wire dipoles
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Mutual Coupling: E2E Modeling
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 Boundary conditions (SISO case)

 Voltages at the ports of the thin wire dipoles

 Projection of the field on the currents and integration
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Mutual Coupling: E2E Modeling
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 A system of linear equations (2 RIS elements for simplicity)



Mutual Coupling: E2E Modeling
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 A system of linear equations (2 RIS elements for simplicity)

             
           
           
     

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 1 1 1 1 2 2 2 1 1 1 1 1

2 2 2 1 1 1 2 2

TT T T TR R R TS S S TS S S T T G T G T T

RT T T RR R R RS S S RS S S R R R R R

S T T T S R R R S S S S S S S S S S S S S

S T T T S R R R S S S S S S S

Z I z Z I z Z I z Z I z V z V z Z I z

Z I z Z I z Z I z Z I z V z Z I z

Z I z Z I z Z I z Z I z V z Z I z

Z I z Z I z Z I z Z I

     

     

     

        2 2 1 1 2 2 2S S S S S Sz V z Z I z  



Mutual Coupling: E2E Modeling
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 A system of linear equations (2 RIS elements for simplicity)
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 A system of linear equations (2 RIS elements for simplicity)

 E2E channel
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Mutual Coupling: E2E Modeling
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Mutual Coupling: E2E Modeling
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Tunable loads / 
Circuit model 

of  the RIS

Mutual coupling
of  the RIS
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Modeling in the Presence of  
Scattering Objects (Multipath)



Modeling in the Presence of  Scattering Objects
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Modeling in the Presence of  Scattering Objects

42



Modeling in the Presence of  Scattering Objects
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Modeling in the Presence of  Scattering Objects
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Modeling in the Presence of  Scattering Objects
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material object discrete dipole approx.

the properties of  the dipoles (length, radius, etc.) and the load impedances
depend on the material object being considered



Modeling in the Presence of  Scattering Objects
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ET

RE

EE

SC

: Impedances between Tx and scatterers (RIS & objects)
: Impedances between scatterers (RIS & objects) and Rx
: Impedances between scatterers (RIS & objects)
: Tunable loads of RIS and material i

Z
Z
Z
Z mpedances of scatterers



Modeling in the Presence of  Scattering Objects
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Schur complement 
to block matrices

The obtained model is formally equivalent to free space:
ZRIS is decoupled from the matrices of  mutual coupling



Modeling in the Presence of  Scattering Objects

48

Schur complement 
to block matrices

Insights: The scatterers do not contribute as an additive term: 

 E2E E2E Multipathfree space H H H



Modeling in the Presence of  Scattering Objects
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Schur complement 
to block matrices

Insights: But, if  ZSO = 0 and ZOS = 0, then 



Modeling in the Presence of  Scattering Objects
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Schur complement 
to block matrices

Insights: But, if  ZSO = 0 and ZOS = 0, then 

 E2E E2E Multipathfree space H H H
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Optimization



RIS: A Loaded Thin Wire Model
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MIMO-RIS in the Presence of  Scattering Objects
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MIMO-RIS in the Presence of  Scattering Objects
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MIMO-RIS in the Presence of  Scattering Objects
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MIMO-RIS in the Presence of  Scattering Objects
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 The approach consists of three steps:
 Sherman-Morrison’s formula

 Sylvester’s determinant theorem

 Gram-Schmidt’s orthogonalization process



MIMO-RIS in the Presence of  Scattering Objects
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MIMO-RIS in the Presence of  Scattering Objects

58



MIMO-RIS in the Presence of  Scattering Objects
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MIMO-RIS in the Presence of  Scattering Objects
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 The approach consists of three steps:
 Sherman-Morrison’s formula

 Sylvester’s determinant theorem

 Gram-Schmidt’s orthogonalization process
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 The approach consists of three steps:
 Sherman-Morrison’s formula

 Sylvester’s determinant theorem

 Gram-Schmidt’s orthogonalization process



MIMO-RIS in the Presence of  Scattering Objects
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 The approach consists of three steps:
 Sherman-Morrison’s formula

 Sylvester’s determinant theorem

 Gram-Schmidt’s orthogonalization process

The vectors uk and vk are not orthogonal orthogonalization



MIMO-RIS in the Presence of  Scattering Objects
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 The approach consists of three steps:
 Sherman-Morrison’s formula

 Sylvester’s determinant theorem

 Gram-Schmidt’s orthogonalization process



MIMO-RIS in the Presence of  Scattering Objects
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MIMO-RIS in the Presence of  Scattering Objects
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Numerical Examples



Optimization in Free Space
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Single-User SISO



Optimization in Free Space (SISO, Fixed Size RIS)
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Optimization in Free Space (SISO, Fixed Size RIS)

69



Optimization in Free Space (SISO, Fixed Size RIS)
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Optimization in Free Space
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Multi-User MIMO



Optimization in Free Space (MIMO, Fixed Size RIS)
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λ/2



Optimization in Free Space (MIMO, Fixed Size RIS)
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mutual 
coupling 

aware

mutual 
coupling 
unaware

λ/2



MIMO-RIS Optimization with Scattering Objects
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ignoring the 
interaction 

between the RIS 
and the objects 
at the design 

stage



MIMO-RIS Optimization with Scattering Objects
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MIMO-RIS Optimization with Scattering Objects
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Conclusion: Approach to Model the Near Field
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 Paradigm #1: The wavefronts of the electromagnetic waves are
(approximated as) locally planar on the antenna arrays
 RISs/HoloS are electrically large and the transmission distances are

shrinking

near field far field

conventional modelRIS/HoloS
model



Conclusion: Approach to Model the Mutual Coupling
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 Paradigm #2: The radiating elements of antenna-arrays are
decoupled electromagnetically
 The inter-distances are smaller than the wavelength (< λ/2)

Conventional 
model

RIS/
HoloS
model

more elements on the 
same surface area

the same elements on a 
smaller surface area
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