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§ Distributed ML can be used to support several wireless IoT
applications which need to perform data aggregation from
multiple data sources [1].

§ Current communication protocols are highly inefficient for
such aggregation.

[1] G. Zhu et al., “Over-the-air computing for wireless data aggregation in massive IoT,” IEEE
Wireless Commun., 2021
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Over-the-Air Computation - AirComp

fpxq fpxq

§ The idea: computation over-the-air in the wireless medium.

§ Integrate communication and computation.

§ Bandwidth is shared among all users in the time,
frequency, and code domain.

§ Transmission relies on analog communication.

2



Literature Review and Challenges

System Model and Problem Formulation

The ChannelComp Solution Method

Simulation Results

Conclusion

2



History of AirComp

2005

Infromation-Theoretic
Perfomance bounds [2]

2009

OAC for sensor
networks[3]

2018

OAC for federated
edge learning [4]

2020

digital OAC for signSGD
using BPSK and QPSK[5]
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2021

Extening Digital OAC
using FSK and PPM[6]

MV

.

.

.

sgnpx1q

sgnpx2q

sgnpxKq

X2ptq

X1ptq
X3ptq

XkptqXkptq ...

...

H1
H2

H3

HkHK

Y ptq

[2] B. Nazer et al., “Reliable computation over multiple-access channels,” in Allerton Conf. on
Commun., Control, and Computing, 2005

[3] M. Goldenbaum et al., “On function computation via wireless sensor multiple-access
channels,” in IEEE Wire. Commun. and Net. Conf., 2009

[4] G. Zhu et al., “Broadband analog aggregation for low-latency federated edge learning,” IEEE
Trans. on Wire.Commun., 2019

[5] G. Zhu et al., “One-bit over-the-air aggregation for communication-efficient federated edge
learning: Design and convergence analysis,” IEEE Wireless Commun., 2020

[6] A. Şahin et al., “Distributed learning over a wireless network with FSK-based majority vote,”
in IEEE CommNet, 2021
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Research Gap in AirComp

Subjects

Methods
Analog Modulation Digital Modulation

Papers [1], [3], [4] [7] [5] [6], [8] [9] Ours

Spectral Efficiency ✓ ✗ ✓ ✗ ✓ ✓

Low Latency ✓ ✗ ✓ ✗ ✓ ✓

BPSK and QPSK ✗ ✗ ✓ ✗ ✓ ✓

QAM 16, 32, . . . ✗ ✗ ✗ ✗ ✗ ✓

Analog
Modulation

✓ ✓ ✗ ✗ ✗ ✓

Sign Function ✗ ✗ ✓ ✓ ✓ ✓

Nomographic
Functions

✓ ✓ ✗ ✗ ✗ ✓

General Functions ✗ ✗ ✗ ✗ ✗ ✓

Ubiquitous
implementation

✗ ✗ ✓ ✓ ✓ ✓

✓: Performance is very good! ✗: It is not studied at all.

[7] M. Goldenbaum et al., “Robust analog function computation via wireless multiple-access
channels,” IEEE Trans. on Commun., 2013

[8] A. Şahin, “A demonstration of over-the-air computation for federated edge learning,” in IEEE
Globecom Workshops, 2022

[9] A. Şahin et al., “Over-the-air computation over balanced numerals,” in IEEE Globecom
Workshops, 2022
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AirComp uses Analog Amplitude Modulations

Over the Air

x1 “ 3

x2 “ 9

“ 12

x⃗1ptq “ 3 cospfctq

The state-of-the-art is based on Amplitude Modulation
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No AirComp with Digital Modulations

Over-the-Air

x1 “ 3 “ p0011q2

‰ 12

x2 “ 9 “ p1001q2
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§ Currently, Digital AirComp is thought to be impossible
because the overlapping of digital waveforms returns
incomprehensible signals. 6
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Standard Digital Communication
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§ E p¨q encodes the real input data x P R to complex domain
with x⃗ P C.

§ Tabular T p¨q simply maps the complex value y⃗ to the
desired function, which can be the identity function for the
standard communication. 7



Our Goal

§ Create Over-the-Air computing methods that are
inherently built for digital communications.

§ To meet this goal, we need to look at the primary idea of
standard digital communication.

§ The proposed method should be able to perform general
function computation.
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System Model and Problem Formulation
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Goal: Finding the encoder E p¨q and the mapping T t¨u to do
the computation for a given quantisation Qp¨q.
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Example: BPSK Modulation

Over-the-Air
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Example: QPSK Modulation (1/2)

Over-the-Air
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By assigning specific values to the reshaped constellation
points, QPSK modulation enables the computation of the
summation function.
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Computing using QPSK Modulation (2/2)
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The overlaps of the reshaped constellation points of QPSK
modulation do not allow us to compute the product function.
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Solution Method

0, . . . , 0

.

.

.

.

.

.

s⃗1

s⃗2

s⃗n1

.

.

.

s⃗n

.

.

.

Df Rs Rf

ř

k x⃗k

1, . . . , 0

q ´ 1, . . . , 1, 0

q ´ 1, . . . , q ´ 1

fp1q

fp2q

fpmq

.

.

.

fpm1q

.

.

.

We pose the following feasibility optimization

P1 “ find x

s.t. f piq ‰ f pjq ñ s⃗i ‰ s⃗j , @pi, jq P rM s2, (1a)

}x}22 “ P. (1b)
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Modulation Selection for Function Computation

To remove non-smoothness in (1a),

P2 “ find x,

s.t.
›

›aT
i x ´ aT

j x
›

›

2
ě γ|f piq ´ f pjq|2, (2a)

}x}22 “ P, (2b)

where ai is a vector whose elements are determined such that
aT
i x “ s⃗i gives the constellation point corresponding to f piq.

§ Problem P2 is a quadratically constrained quadratic
programming (QCQP)[10].

§ Unfortunately, Problem P2 is an NP-hard problem[11].

[10] J. Park et al., “General heuristics for nonconvex quadratically constrained quadratic
programming,” arXiv preprint arXiv:1703.07870, 2017

[11] N. D. Sidiropoulos et al., “Transmit beamforming for physical-layer multicasting,” IEEE
Trans. Sig. Proc., 2006
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Solving QCQP Optimization P2 (1/2)

We can use the lifting trick X :“ xxT and equivalently recast
the optimization to the following formulation

P2 “ find X,

s.t. xX,Bi,jy ě γi,j , tracepXq “ P, (3a)

X ľ 0, rankpXq “ 1, (3b)

where

Bi,j “ pai ´ ajqpai ´ ajq
T, γi,j “ γ|f piq ´ f pjq|2.
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Solving QCQP Optimization P2 (2/2)

By dropping the rank constraint in (3b),

P3 “ find X,

s.t. xX,Bi,jy ě γi,j , (4a)

X ľ 0, tracepXq “ P. (4b)

§ Problem P3 is an SDP problem, and it can be efficiently
solved[12].

§ Using Cholesky decomposition, we have X̂ “ x̂x̂H where
X̂ and x̂ are the solutions to Problem P3 and Problem P2,
respectively.

§ Another sub-optimal solution to Problem P2 is to use the
Gaussian randomization method [13].

[12] M. Grant et al., CVX: MATLAB software for disciplined convex programming, 2014

[13] Z.-Q. Luo et al., “Semidefinite relaxation of quadratic optimization problems,” IEEE Sig.
Proc. Mag., 2010
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Simulations Setup

§ ChannelComp (Problem P3) performance is compared to
§ OFDMA (modulation vector from (4)).
§ AirComp, which uses analog modulation.

§ Functions tested with K “ 4 nodes:
§ f1 “

ř4
k“1 xk

§ f2 “
ś4

k“1 xk

§ f3 “
ř4

k“1 x
2
k

§ f4 “ maxk xk

for xk P t0, 1, 2, . . . , 7u

§ Input signals transmitted over an AWGN channel.

§ NMSE used to characterize computation error over
Ns “ 100 Monte Carlo trials for different SNRs.
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Performance Comparison
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§ Thanks to constructive overlaps of the reshaped modulation,
ChannelComp outperforms AirComp and OFDMA with more
than 10 dB improvement for the product function.
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Conclusion

§ Our work is the first attempt to propose general digital
modulations for function computation over the MAC.

§ The proposed ChannelComp properties:
§ Ultra-low-latency
§ General functions computation
§ Any digital modulations
§ Simple communication architecture
§ Integration of both the encoder and modulation
§ Extension of AirComp (it works for analog as well)

§ Generalization to MIMO, fading channels, asynchronous,
etc.

§ Applications of ChannelComp for, e.g., federated edge
learning, sensor networks, and distributed sensing
problems.
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Q&A

§ S. Razavikia, J. M. Barros da Silva Jr., C. Fischione,
“Computing Function Over-the-Air Using Digital
Modulations”, IEEE ICC, 2023.

§ Thanks for your attention! Any question?
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